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1. Introduction 
To optimize calculations in structural dynamics, we are often confronted to solve formulations using Frequency 
Response Functions (FRF) matrices, like dynamic sub-structuring or structural modifications problems [1, 2]. In 
practice, this resolution is based on the knowledge of the frequency response function (FRF) matrix )(ωH . 
This matrix can be estimated either from an analytical or numerical simulation model, similar to the real model, 
or from experimental data.  
In the experimental case, the matrix H(ω), at each frequency in the analyzed band, is often evaluated either by 
reconstruction from the identified eigensolutions of the system, which requires a previous modal identification 
[3], or by direct measurement of all its independent elements. This last situation is rarely applied, because it’s 
not economical, therefore only a very limited number of columns of the dynamic flexibility matrix can be 
measured, and consequently the other columns must be estimated. 
In this work, we first develop a technique of structural modifications based on the knowledge of the frequency 
response functions relative to the original structure and the introduced modifications. Next, we propose, after 
having exposed conventional techniques for estimating the dynamic flexibility matrix, a technique which allows 
to evaluate the complete matrix without using the modal identification. A similar principle has already been 
proposed in the references [4, 5] and the idea is extended and combined with a procedure which permits to 
choose, for numerical simulations, an optimal placement of excitations [6]. 
A numerical simulation example will be proposed to validate the proposed formulations, and to discuss the 
effects of choice of number and positions of exciters, used to measure flexibility matrices, and the effect of 
damping on the quality of the evaluation.  

   !
2. Structural modification problems via transfer functions 
2.1. General formulation 
The modified structure can be represented by an assembly of two subsystems: the initial structure and an 
additional system constituted by the introduced modifications. 
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The equation representing the particular solution of the structure in its initial state, under a harmonic excitation, 
is expressed in matrix form as 

fHz )()( ωω =              (1) 

Where cc,)( CH ∈ω  is the symmetric FRF matrix of the initial structure (abbrev. I.S.), at the frequency ω, c is 

the number of pickup degrees-of-freedom (DOF) and )(ωz ,! 1,cCf ∈  represent the response vectors and 
external force, respectively. 
To reduce the writing, we omit the argument !. The above equation is partitioned in the form: 
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Where a denotes the DOF affected by the modification, and i denotes the other DOF. 
The additional system, constituted by some known parametric modifications that not alter the order of the 
system, is represented by the dynamic stiffness matrix: 

            [ ] aa,2ωjω CMBKZ aaaaaa ∈−+= ΔΔΔΔ             (3) 

where aaKΔ , aaMΔ , aaBΔ ∈ Ra;a
 are the symmetric stiffness, mass and damping matrices of the structural 

modification, respectively. 
The linking forces vector al

~f  exerted by the I.S. on the additional system can be written (after condensation on 
the DOF of connection with the I.S.): 

a,1
aaa,al
~~ CzZf ∈= Δ              (4) 

Where a
~z  is the displacement vector of the additional system at the connection points with the I.S. 

The flexibility relation of the modified structure (abbev. M.S.) is written: 
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with : a,1-cˆ Cff i ∈=  and a,1
a
ˆ Cfff ala ∈+=  , alf !is the linking forces vector exerted by the additional system 

on the DOF of type “a”. 
The connection conditions are: 

!!!!!!!!!!!!! aa ˆ~ zz = !;!! 0=+ alffal
~                 (6) 

After using equations (4) and (6), equation (5) can be written as: 
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(7) 
with : [ ] 1−+= aaaaa ZHIW Δ . 
Using equation (7), one can express the forced responses of the M.S., without recourse to an exact but costly 
reanalysis, by using only the dynamic flexibility matrix of the I.S. and the dynamic stiffness matrix of the 
introduced modification. The modal parameters of the M.S. are then accessed by applying a modal identification 
method on the previous frequency responses. In order to evaluate the FRF of the M.S. from (7), we have to 
determinate the matrix W  at each frequency ω. This evaluation cost depends of the number a of DOFs affected 
by structural modifications.  
 
2.2. Case of connecting DOFs to ground 
For problems of attached DOFs to ground, in the simplest case, we choose for perturbation matrices 0=aaMΔ !
and aaKΔ  as a diagonal matrix with very big diagonal elements. Then, the stiffness perturbation connects quasi-
rigidly the a DOFs to the fixed reference. Equation (7) reduces to: 

    ifHz ˆˆi =                (8) 

where:  aiaaiaii
ˆ WHKHHH Δ−=   and [ ] 1−+= aaaaa KHIW Δ .    
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If we take aaKΔ  in the following form: 

aaa kIK =Δ , k  is a positive scalar and aI  the unit matrix of order a. 

the matrices W  and  Ĥ  become : 
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and for k tending to infinity, Ĥ  is written:!

        [ ] ai
1

aaiaii HHHHĤ −−=              (9) 

In this formulation, the introduction of structural modifications is avoided, but we are always confronted with 
the inversion of the sub-matrix aaH  of order equal to the number of fixed DOFs. One can find the same 
formulation that (9), but established with a different way, by using (5) and imposing the constraint 0=aẑ . 
 
3. Evaluation of the FRF matrix 
For solving structural modifications problems defined in (7), for example, we must know the dynamic flexibility 
matrix of the I.S. which can be estimated in various ways. 
 
3.1. Estimation from an updated finite element model 
In the dynamics of mechanical structures, a continuous system is often discretized and represented by models 
consisting of a limited number n of DOFs [7, 8]. A first way to determinate the FRF matrix nn,)( CH ∈ω , at a 
frequency ω, is by a calculation from an available finite element model. If we note M , B !and K , respectively 
the mass, damping and stiffness matrices of the structure, the FRF matrix is then calculated by the following 
relation: 

    1−−+= )ωjω()( 2MBKH ω             (10) 

This can be a computationally very intensive calculation in the case of component models with a large number 
of DOFs and/or a wide excitation frequency range. After all, the dynamic stiffness matrix has to be inverted for 
every discrete frequency in the frequency range of interest. 
 
3.2. Estimation using experimental measurements 
When data are resulting from experimental measurements, we are often constrained to operate with a reduced 
sub matrix cc,

cc CH ∈  where: c (c << n) represents the limited number of sensors which have been optimally 
placed on the tested structure [9, 10]. 
The elements of )(cc ωH !are generally evaluated either by reconstruction using identified eigensolutions, or by 

direct measurement of its c×(c+1)/2 independent elements. 
 
3.2.1 Reconstruction using identified eigensolutions  
A second way to determine the FRFs of a damped structure is by using an FRF synthesis based on a finite 
number of eigenvectors and eigenfrequencies of the structure. If we consider an " DOF structure whose 
behaviour is represented on the basis of its 2" complex modes, the relationship between the synthesized FRF 
matrix )(ωH  and eigenvectors is expressed by 

!!!!!!!!!!!!!! TT SISIH ΨΨΨΨ 11 −− −+−= )jω()jω()(ω          (11) 

Where nn,C∈Ψ , [ ] nn,
isDiag CS ∈=  represent respectively the modal and spectral matrices of the structure and 

Ψ ,! S  are respectively the conjugate matrices of Ψ !and S . 
Usually, the number m of identified modes is less than the total number n of DOFs (m << n). In the given 
frequency band containing the modes measured, one can express )(ωH !as: 

     )()()( rd ωωω HHH += !          (12) 
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Where )(d ωH ,! )(r ωH nn,C∈  represent the contributions of the eigenmodes inside and outside the observed 

frequency band, respectively. The matrix )(d ωH  is defined by :  

                TT SISIH 1
1

111
1

11 ΨΨΨΨ −− −+−= )jω()jω()( mm
d ω                      (13) 

Where: mn,C∈1Ψ , mm,CS ∈1  are respectively modal and spectral sub-matrices corresponding to the m 
identified eigenmodes. 
In order to compensate partially the contribution of the (n – m) unidentified modes [14], in the observed band, 
the part )(r ωH  of )(ωH  is frequently approximated by their static contribution:!

!!!! )()()()( drr 000 HHHH −=≅ω                    (14) 

This compensation is important in the extern resonance zones of )(d ωH , where the static contributions to the 
response of the modes which have not been measured are significant. 
Like already mentioned above, we will use only the sub-matrix cc,

cc )( CH ∈ω (m < c < n) of )(ωH  relative to 
the c pickup DOFs. The matrix )(cc ωH  is defined by: 

)(+)(=)( r
cc

d
cccc ωωω HHH                    (15) 

Where: 
             T

cc
T
cc SISIH 1

1
111

1
11 ΨΨΨΨ −− −+−= )jω()jω()( mm

d
cc ω         (16) 

)()()()( d
cc

r
cc

r
cc 000 HHHH −=≅ω  

mn,Cc ∈1Ψ  (m < c) is the modal sub-matrix of  1Ψ  at the c observed DOFs. 

To estimate )(cc ωH , we need to identify the matrices c1Ψ ! , 1S !and cc,r
cc )( CH ∈ω . For that, only p (p < c) 

columns or lines of )(cc ωH  are sufficient [3], these ones are measured by applying linearly independent 
excitations in the observed frequency band. Thus, equations (15) and (16) allow the matrix )(cc ωH  to be 
evaluated from a much small number of observed columns p among the c columns. Several modal identification 
methods have been developed for this purpose. One can see, for example, reference [3]. In order to avoid a 
costly modal identification of the three matrices c1Ψ , 1S !and )(rcc ωH  an alternative method is proposed, it is 

based on the direct exploitation of a knowledge sub-matrix pc,
1 )( CH ∈ω  of )(cc ωH . 

 
3.2.2 Direct evaluation of the FRF matrices 
In this purpose, the contributions of all the structural modes are taken into account. The entire knowledge of 

)(cc ωH  requires c sensors and c excitations. Usually, for economic reasons, only a limited number p of linearly 
independent excitation configurations is available. 
Problem: Knowing p (p < c) columns from )(cc ωH  denoted by the sub-matrix pc,

1 )( CH ∈ω , we have to 

estimate (at the best) the c − p  remaining columns without performing a modal identification.  
In the following, a technique which contributes to the resolution of this problem is described.  As references to 
similar method we can see [4, 5]. 
To precise the unknowns of the problem, the FRF matrix )(cc ωH !is partitioned into sub matrices as: 

!!! ( ) !!
"

#
$$
%

&
==

2221

1211
21cc HH

HH
HHH           (17) 

Where: pc,
1 CH ∈  is the known part of ccH , pp,

11 CH ∈  a square sub-matrix of 1H ! and p-cc,
2 CH ∈  is the 

unknown part of ccH . 
We only consider cases where the FRF matrix )(cc ωH  is symmetric:  

THH 21=12 ,! THH 11=11 ,! THH 22=22 . 
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In this case, the number of unknown elements of the rectangular matrix 2H  is contained in the square matrix 

22H . Thus the total number of unknown elements is reduced to c×(c− p+1)/2. 
 
a)! Evaluation by using spectral factorization of the square measured sub-matrix 11H  
The eigenvalues iγ  and eigenvectors iϕ  (i=1, …,p) of the matrix 11H  are defined by the eigenvalues problem 
[12]:!

     ( ) 0=− ipi11 ϕγ IH , i=1, …,p           (18) 

One can then write the complex symmetric matrix 11H  in the form: 

T
111111 ΓΦΦ=H            (19) 

Where: pp,
11, C∈ΦΓ  are the diagonal matrix of eigenvalues and the modal matrix of eigenvectors of 11H , 

respectively. These eigenvectors are normed such that: 

                  p11
T
11

T
1111 I== ΦΦΦΦ                        (20) 

The factorization (19) is valid for the matrices with distinct eigenvalues and possibly for the matrices with 
multiple eigenvalues. 
To estimation the whole FRF matrix, let us look for the matrix pp,-c

21 C∈Φ  such that: 
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It can be deduced from this that: 

         1−= ΓΦΦ 112121 H             (22) 
Thus the sub-matrix 22H  is approached by:  

T
212122 ΓΦΦ=H  

Consequently the complete FRF matrix ccH  is approximated by the matrix: 

( )TTH 2111 ΦΦΓ
Φ

Φ
##
$

%
&&
'

(
=

21

11
cc
~               (23) 

Reviews 
•! In the case where some diagonal elements iγ  of the diagonal matrix Γ ! are very low values, it is 

obvious that the calculation of Φ  can influence the evaluation quality. 
•! Generally the eigenvalues of a matrix do not give precise information about its rank. If it is desired to 

control the rank of the matrix 11H , it is preferable to use singular value decomposition [5, 13]. 

 
b)! Complementary formulation 
Numerical simulations show that, with the previous formulation, the quality of evaluation in the neighborhoods 
of anti-resonance frequencies (low amplitude regions) is poor, but in the regions of resonance frequencies the 
quality is practically perfect. In this case, for improving the estimation in the low amplitude regions, one can 
exploit an idea already proposed in [5], where the flexibility matrix can be expressed, at each frequency ! of the 
analyzed band, by a linear combination of the dynamic flexibilities at resonance frequencies. The steps to follow 
are described below: 

(1)! Estimate approximately, from the measured FRF rectangular sub-matrix 1H , the m resonance 
frequencies iω !(i = 1, …, m) in the analysis band; 

(2)! Calculate )( icc ωH , for i = 1, …, m, by eq. (23); 
(3)!Using the least squares process, find  the coefficients C∈)(xi ω , i = 1, …, m which can verify: 
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  )()(x)( i
m

i 1i1 ωωω ∑ =
=

1
HH            (24) 

(4)! In end, by analogy with (24), calculate )(cc ωH , at each frequency ω of the analyzed band, by using the 
results of preceding steps, which give: 

   )()(x)( i
m

i ccicc ωωω ∑ =
=

1
HH           (25) 

It is evident that the quality of evaluation of the FRF matrix depends particularly on the positions and the 
number of sensors and exciters, the structure damping and the spectral density. 
 
c)! Choice the best columns of 1H  
To proof that the estimation of ccH !depends on choice of the excitations, one can exploit the methods presented 
in references [5, 6, 7]. 
For numerical simulations presented in section 4, we will choose the rectangular sub-matrix 1H , containing the 
p known columns of ccH , by using the combinatorial method presented by Majed in [6]. This technique is 
constructed from an available finite element model, and permits to have the best positions of p excitations 
between g DOFs possibly excitable (i.e. it permits to choose p linearly independent columns of the FRF matrix 
among g columns). The technique consists in generating all possible combinations of potential p DOFs among 
the picked DOFs; a criterion for the final selection of the best combinations is then applied among those 
obtained previously."
 
4. Results and discussion 
To illustrate the procedure relative to the evaluation of the FRF matrix, one considers the 2D frame represented 
in Figure 1. The structure is modeled by using a finite element code. This model is discretized into 22 finite 
beam elements; it contains 20 unconstrained nodes with 3 DOFs per node. The frame has the following physical 
and geometrical characteristics: 

-! Beam section S = 1.392×10-4 N/m2 ; moment of inertia  I = 2.673×10-10 m4 ; 
-! Young’s modulus = 2.1×1011 N/m2 ; density ρ = 7800 kg/m3 ; 
-! L1 = 0.6 m ; L2 = 0.45 m ; L3 = 0.36 m. 

 
Figure 1: 2D frame   (   Positions of c = 24 sensors) 

A proportional damping ( BKMKBM 11 −− = ) is introduced and the “exact” FRF matrix )(ωH  is calculated, at 
each frequency ω in the analyzed band, by using the eigenmodes of the dissipative structure. We note 

)Im(s/)Re(sa iii =  the ith modal damping factor; iiii jωas +−= ω ! is the ith eigenvalue of the structure. The 
frequency band under consideration [0, 200 Hz] contains the first 9 eigenfrequencies of the structure (see Table 
1). 
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Table 1: Reference values of the first 10 eigenfrequencies of the frame 

Mode number 1 2 3 4 5 6 7 8 9 10 

Frequencies (Hz) 8.76 29.37 43.76 56.21 96.04 102.57 147.40 175.11 179.60 206.89 

 
We suppose that we know p columns of the matrix )(cc ωH  and we look for the remaining c− p  columns. A 
total of c = 24 pickups DOFs are arbitrarily chosen.  
In order to justify that the quality of the evaluation depends on the positions and the number of the excitations, 
and the damping of the structure, we consider the following cases. 

 
(a)!Choice of p=4 arbitrarily selected excitation points, with a modal damping factor ai = 0.01, i = 1, 2, … 

The remaining 20 columns of the matrix )(cc ωH ! are determined on the basis of the 4 measured columns, 
yielding a total of 138 unknown elements if symmetry is taken into account. In Fig. 2, the evolution of the 
amplitude of one unknown element Hij is plotted as a function of ω and compared with the exact values. This 
curve shows that an arbitrary choice of the locations of 4 exciters leads to mediocre evaluation quality in some 
regions of the frequency band. The expansion is nearly perfect in the neighborhood of the resonances but 
remains poor in the low amplitude regions, especially near the anti-resonances. A certain number of parasitic 
resonances inadvertently appear in certain components of the estimated FRF matrix cc

~H . These peaks 
correspond to the resonance frequencies of the structure and though they do not appear on all the elements of the 
exact FRF matrix ccH , they can appear in the homologous expanded elements. These parasitic peaks can be 
attenuated by judiciously choosing the rank of )(11 ωH .  

!
  Figure 2: p=4 arbitrarily selected excitation points, with a modal damping factor ai = 0.01 

We also note that, for the element considered in the above figure, the estimated curve presents some spurious 
peaks which are not related to resonance frequencies of the structure, but to the fact that the matrix 11H  may be 
ill-conditioned for some frequencies; it is thus during the factorization (19) that very small values will appear in 
the diagonal matrix Γ , and which will become very large during its inversion. Therefore, it is equation (22) that 
can generate such peaks when the matrices considered are not of full rank. This means that the observed 
columns of the matrix ccH must be selected intelligently. 

(b)!Choice of p=4 optimal selected excitation points, with a modal damping factor ai = 0.01, i = 1, 2, … 
This case is similar to the case (a) except that the p=4 exciters are here optimally chosen, by using the technique 
presented in [6]. The figure 3, show the evolution of the exact and estimated amplitudes of the same element Hij. 
The results in this case are significantly better than the previous ones. But, there are still some regions where the 
estimation remains mediocre. We must note that choose of the best positions of excitations is an experimental 
problem. In the below case, we look what will happened if the number p of optimal exciters increases. 
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Figure 3:  p = 4 optimal selected excitation points, with a modal damping factor ai = 0.01 

(c)! Choice of p = 8 optimal selected excitation points, with a modal damping factor ai = 0.01 
 

!
Figure 4:  p = 8 optimal selected excitation points, with a modal damping factor ai = 0.01 

In this case we consider p=8 optimal selected excitation points, with the same modal damping factor ai = 0.01, 
and we will study the same element Hij as above. In Figure 4, we see that increasing p improves sensibly the 
quality of the results; especially near the resonances where the quality is perfect.  Generally the results obtained 
are better than those of the cases (a) and (b). Nevertheless, the estimation remains poor in the neighborhood of 
some anti-resonances but it’s acceptable for those located in the frequency band [0, 60 Hz]. To improve the 
estimation in the neighborhood of anti-resonances, we use, after exploiting eq. (23) at the resonances 
frequencies, the results obtained by the complementary formulation eq. (25); Figure 5 illustrate this 
amelioration. 

!
Figure 5: p = 8 optimal selected excitation points, with a modal damping factor ai = 0.01, using eq. (25) 

(d)!Choice of p=8 selected excitation points, with a modal damping factor ai = 0.1 
The effect of damping is illustrated in Figure 6 for the same element of )(cc ωH  as before except that the 
damping coefficients are now ai = 0.1. In general, the results remain acceptable even if of the quality is lower in 
certain regions. 
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Note that, all the unknown elements are not same quality of estimation than the element Hij. There are some 
ones that are better, some are the same quality and others are less better but with acceptable quality. 

 

 
Figure 6: p = 8 optimal selected excitation points, with a modal damping factor ai = 0.1 

Conclusion 
The objective was to contribute to the resolution of certain dynamic structures problems established from the 
FRF matrices. For this, in section 2, we have presented a formulation dealing with the reanalysis of modified 
structures problems, and discussed the case where some DOF can be rigidly connected to the ground. In general, 
the quality of the frequency responses of the modified structure depends on the quality of estimation of the 
flexibility matrices of the original structure. To do so, we have proposed, in paragraph 3.2.2, a method, based on 
a spectral decomposition of a square FRF sub-matrix; in some low amplitude regions, this method can be 
associated to the complementary formulation exposed in eq. (25) for improving the results.  
Through the numerical simulations, we have seen that the estimation quality of the FRF matrix )(cc ωH  
depends on several factors. In the case where a degradation of the quality of the estimation is observed, even 
with a better choice of the positions of the exciters, an increase in the number of exciters can correct this defect. 
The increase in damping also makes it possible to improve the quality of the estimation and to attenuate the 
spurious peaks which appear in the spectrum.  
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